Early-Age Behaviour of Fiber Reinforced High Performance Concretes
Abstract
The aim of this experimental activity was to study the early-age behavior of several Fiber-Reinforced Concretes (FRCs) containing expansive agent. The investigation concerned the evaluation of the influence of different amounts of fibers (dosages of 2.0%, 1.75% and 1.5% by volume of FRCC) on the mechanical performance of FRCs. In particular, hooked brass-coated fibers were used and dead-burnt calcium oxide based expansive agent was employed at a dosage of 40 kg/m3. The attention was focused on the strength development at early ages. Mechanical tests were carried out at 0.25 (i.e. 6 hours, that is time of demolding), 1, 2, 7 up to 28 days of curing. The properties of FRCs were characterized at the fresh state, by measuring flow ability and consistency as well as at hardened state by measuring compressive and flexural strength up to 28 days. Flexural strength was measured on prismatic specimens according to the procedure described in EN 12390-5. The different dosage of fibers did not influence the values of compressive strength, while there is a significant difference in terms of 28-day flexural strength between the several mixtures depending on the different amount of fibers. In all cases at least 20 MPa of 28-day peak flexural strength were achieved.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright & License
All Research Plus Journals (RPJ) publish open access articles under the terms of the Creative Commons Attribution (CC BY-SA 4.0) https://creativecommons.org/licenses/by-sa/4.0/ License which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article in a journal published by a RPJ is retained by the author(s). Authors grant RPJ a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to RPJ either via RPJ journal portal or other channel to publish their research work in RPJ agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by RPJ.
3rd party copyright
It is the responsibility of author(s) to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.
Disclaimer
Research Plus Journals Open Access articles posted to repositories or websites are without warranty from RPJ of any kind, either express or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. To the fullest extent permitted by law RPJ disclaims all liability for any loss or damage arising out of, or in connection, with the use of or inability to use the content.