Lateral Autonomous Performance Maximization of Tactical Unmanned Aerial Vehicles by Integrated Passive and Active Morphing
Abstract
Abstract— In this conference article, combined passive and active morphing approach is applied on tactical unmanned aerial vehicles (TUAVs) for autonomous flight performance maximization. For this intention lateral dynamic modeling of TUAVs manufactured in Erciyes University, Faculty of Aeronautics and Astronautics, Model Aircraft Laboratory is investigated in order to obtain lateral state-space model and a simulation model. Our manufactured TUAV is named as ZANKA-III which has weight of 50 kg, range of around 3000 km, endurance of around 28 hour, and ceiling altitude of around 12500 m. Von-Karman turbulence modeling is applied in order to capture atmospheric turbulence in lateral simulation environment. A stochastic optimization method called as simultaneous perturbation stochastic approximation (i.e. SPSA) is used in order to get optimum dimensions morphing parameters (i.e. extension ratios of wingspan and tailspan, assembly positions of wing and tailplane to fuselage).

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright & License
All Research Plus Journals (RPJ) publish open access articles under the terms of the Creative Commons Attribution (CC BY-SA 4.0) https://creativecommons.org/licenses/by-sa/4.0/ License which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article in a journal published by a RPJ is retained by the author(s). Authors grant RPJ a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to RPJ either via RPJ journal portal or other channel to publish their research work in RPJ agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by RPJ.
3rd party copyright
It is the responsibility of author(s) to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.
Disclaimer
Research Plus Journals Open Access articles posted to repositories or websites are without warranty from RPJ of any kind, either express or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. To the fullest extent permitted by law RPJ disclaims all liability for any loss or damage arising out of, or in connection, with the use of or inability to use the content.